
CSEP504:

Advanced topics in software systems

• Catching up on some things – interspersed

– Structured reports

– State-of-the-research reports

– Topic #3

• Tonight: first of three lectures on software tools and

environments

– Main roles of tools and environments – absolutely

incomplete

– Historical overview – absolutely incomplete

– Opportunities – absolutely incomplete

David Notkin  Winter 2010  CSEP504 Lecture 4

Last week

• Many thanks to Yuriy for lecturing

• Visited Georgia Tech, College of Computing

– Member of dissertation committee

– Colloquium

UW CSE P504 2

What is a tool?

• “1. a device or implement, typically hand-held, used to carry out

a particular function.

2. a thing used to help perform a job • a person exploited by

another.”
• "tool n." The Concise Oxford English Dictionary, Twelfth edition . Ed. Catherine Soanes and Angus Stevenson. Oxford University

Press, 2008. Oxford Reference Online. Oxford University Press. University of Washington. 31 January

2010 <http://www.oxfordreference.com/views/ENTRY.html?subview=Main&entry=t23.e59094>

√ We‟ll focus on software tools – that is, programs that help

programmers develop programs

X Programs that help non-programmers (or programmers)

develop non-programming artifacts –word processors for writing

a book, …

X Other tools that help programmers develop programs – pencil &

paper, whiteboards, information hiding, …

UW CSE P504 3

lowes.com (1/31/2010) lists 4622 tools

(power tools, hand tools, electrical tools, etc.)

What environments and tools do you use?

UW CSE P504 4

Wikipedia: computer programming tools
29 subcategories (1/31/2010)

• Bug and issue tracking software (42
pages)

• Build automation (37)

• Code navigation tools (1)

• Code search engines (11)

• Compilers (65)

• Computer-aided software engineering
tools (15)

• Debuggers (2)

• Disassemblers (4)

• Discontinued development tools (5)

• Documentation generators (17)

• EXE packers (2)

• Formal methods tools (17)

• Free computer programming tools (25)

• GUI automation (37)

• Integrated development environments
(143)

• Java development tools (67)

• Microsoft development tools (44)

• Profilers (17)

• Program testing tools (50)

• Programming language
implementation (58)

• Revision control systems (27)

• Static code analysis (58)

• Text editors (38)

• UML tools (26)

• Unix programming tools (58)

• User interface builders (16)

• Web Services tools (2)

• Web development software (57)

• Computer programming tool stubs
(124)

UW CSE P504 5

What was the first computer?

UW CSE P504 6

Analytical Engine(s)

• [Material and photographs from the Computer History Museum web site
and Wikipedia]

• Charles Babbage‟s (1791-1871) Analytical Engine is
“much more than a calculator and marks the
progression from the mechanized arithmetic of
calculation to fully-fledged general-purpose
computation.”

• The logical structure had a separation of the memory
(the 'Store') from the central processor (the 'Mill'),
serial operation using a 'fetch-execute cycle', and
facilities for inputting and outputting data and
instructions

• 1,000 numbers of 50 decimal digits each

UW CSE P504 7

http://commons.wikimedia.org/wiki/File:AnalyticalMachine_Babbage_London.jpg {{Information |Description = Machine Analytique de Charles Babbage,

exposée au Science Museum de Londres Date = 5 Mai 2009 |Auteur = Bruno Barral |Permission = CC-BY-SA-2.5}}

http://commons.wikimedia.org/wiki/File:AnalyticalMachine_Babbage_London.jpg

Programming the Analytical Engine

• Programmable using

punched cards

• Idea borrowed from the

Jacquard loom used for

weaving complex patterns

in textiles

• The programming

language had loops and

conditional branching

• Was Turing-equivalent

(before Turing)

UW CSE P504 9

• Three different types of

punch cards used:

arithmetic operations,

numerical constants, load

and store operations

Ada Lovelace: the 1st programmer

• She wrote a method for

calculating a sequence

of Bernoulli numbers

• It would have run

correctly (had the

Engine ever been built)

• Babbage called her the

“Enchantress of

Numbers”

• Died in 1852 at 37

years-old

UW CSE P504 10

ENIAC [http://www.computersciencelab.com]

• Mauchly-Eckert at Penn in 1943-

45

• Circ := 3.14 * diam

– Rearrange many patch cords, locate

and set three specific knobs to 3, 1, 4

• 20‟x40‟, 30 tons,

more than 18K

vacuum tubes

• Held 20 numbers

• 0.0028th second

for a multiply,

100K cycles/sec

• The first ENIAC

program remains

classified

UW CSE P504 11

“C” is for …? Why?

Data General Nova

• This file is licensed under the Creative Commons

Attribution-Share Alike 3.0 Unported license

UW CSE P504 12

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license

http://commons.wikimedia.org/wiki/File:Nova1200.agr.jpg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://creativecommons.org/licenses/by-sa/3.0/deed.en

The point: what‟s expensive?

Buying Computer

Paying Programmer

UW CSE P504 13

As people (“producing the

software”) become more expensive

relative to the computer (“producing

the hardware”), people productivity

becomes more critical

My view

• Successful software tools are designed with an excellent

understanding of what computers do well and what people do

well

– Unsuccessful tools generally make a mistake in at least one

of these dimensions

• The “what computers do well” dimension surely shifts over time

– Faster, bigger and cheaper computers

– Better algorithms, interfaces, ideas, etc.

• The “what people do well” dimension shifts much less slowly

over time

– However, as the cost of quality people increases, the ratio

changes as well

UW CSE P504 14

Interlude

• Structured reports – questions, concerns?

– Yes, Virginia, there is a discussion board

• State-of-the-research reports

– We‟ll announce turn-in and commenting

mechanism soon

– If there has been one confusion, it has been on

how arbitrary the topic can be

UW CSE P504 15

Non-interactive programming

• Interactive programming would have been a poor early use of computer time

• Programming 1960‟s mainframes was often done by programmers filling in

coding forms, with keypunch operators then entering the code – programmers

cheaper than computers, keypunchers cheaper than programmers

16http://www.fortran.com/ibm3.jpg

Keypunch

• IBM 029 – 1960‟s and 1970‟s

• “Ah, yes, but the real trick is fixing a variable name when you've left

out a letter. You could jam one card in place, and either type or

space to move the other, then continue duplicating.”

– Conversations from the Old Programmers' Home
http://www.firelily.com/humor/programming/old.prog.html

• Debugging from listings

– No modifying structure

– No search

– No stepping through code

– …

– Counterpoint: more thinking

UW CSE P504 17

http://www.multicians.org/mulimg/headpage.gif

http://www.firelily.com/humor/programming/old.prog.html
http://www.multicians.org/mulimg/headpage.gif

High-level languages and compilers

• High-level languages were questionable because of

difficulties in developing compilers

• There was a lack of theory, a lack of experience,

limited memory capacity, and no lessening of

performance demands

• As porting software to new architectures became

more frequent, assembly languages became

increasingly limiting – technology was developed that

enabled compilers

– Nice feedback loop between new architectures,

high-level languages, compiling techniques,

bootstrapping, etc.

UW CSE P504 18

Interactive editing: line editors

• No window or screen display of content

• Short commands that minimized typing

• Search and (usually) random-access to lines

• Localized modifications (e.g., fix typos)

• Repeated modifications (e.g., change variable name)

• Search/replace initially based on simple matching,

later on regular expressions

• Significant improvement on keypunches

UW CSE P504 19

Interactive editing: screen editors

• Video screens enabled screen editors

– Indeed, screen editors and resulting productivity

arguably increased the market for video screens

• Provided visible context – not only a cursor, but a

cursor in context of a sequence of lines of data

• vi – screen version of ed, still in use

• Customizable/programmable (e.g., macros) – TECO,

emacs, …

• But compiling, running, etc. was still a batch process

UW CSE P504 20

Emacs: MIT AI Lab (from emacswiki)

• 1972: display (screen) editing added to TECO

• 1974: Stallman added macros to TECO

• 1976: Stallman combined scads of macros into a

single command set and an extensibility mechanism

– “Editor MACrosS”

• 1978: Bernard Greenberg wrote MulticsEmacs (at

Honeywell) in MacLisp, including user extensions

• 1981: Gosling Emacs, the first variant to run on Unix,

written in C with MockLisp for extension

• 1984: Stallman started GNU Emacs

UW CSE P504 21

Emacs feature: extensibility

• Add libraries/packages/extensions

• Extensions turn Emacs into an environment in which

programmers edit, compile, and debug code using a

single interface

• And many more not specifically related to

programming – calculators, calendars, document
processing support (TeX, LaTeX), web browsing,

email, chat clients, online help, spreadsheets, etc.

UW CSE P504 22

Emacs feature: customizability

• Simple setting of common customization variables

such as the color scheme

• Defining keyboard macros

• .emacs startup files that set variables, set key

bindings, etc.

– Many people have huge .emacs files with wildly

idiosyncratic customizations

UW CSE P504 23

Emacs feature: editing modes

• “Major modes” to provide convenience for text, for
most programming languages, for HTML, for

TeX/LaTeX, etc.

– Syntax highlighting using different fonts or colors

– Automatic indentation

– “Electric” features such as automatic insertion of

elements such as spaces, newlines, and

parentheses

– Special editing commands like commands to jump

to the beginning and the end of a function

• “Minor modes” to support (for example) different

indentation styles within the C “major mode”

UW CSE P504 24

Emacs features: other

• Performance

• Portability

• Self-documenting

• Manuals

• …

UW CSE P504 25

Editors: discussion

UW CSE P504 26

Interpreters

• Interactive access to

computers enabled

interpreters

• Tend to reduce time-to-

execute (-test)

• Tend to make finding bugs

and fixing them easier than

for compiled languages

• Also expanded the number

of programmers and the

variation in their

background (and possibly

their ability)

BASIC (Kemeny/Kurtz „83) principles

• Easy for beginners (students, non-

science and non-math focus)

• General-purpose programming

language

• Allow advanced features to be

added for experts

• Interactive

• Good error messages

• Quick response

• Allow programmers to remain

unaware of hardware and OS

UW CSE P504 27

Debuggers

• In 1945, a moth was found trapped in and then

removed from Harvard‟s Mark II Aiken Relay

Calculator

• The operator entry said this was the “first actual case

of bug being found” and that they had successfully

"debugged" the problem

• Features of debuggers include breakpoints, tracing,

watchpoints, examining and set variables, examining

the callstack, …

UW CSE P504 28

Interactive Fortran (circa 1969)
N. Rawlings (©1995-2007 Computer History Museum)

• FDEBUG

– modifications to compiler (to keep the symbol table)

– modifications to the operating system (to insert illegal

instructions, give control to the debugger/user, etc.)

– Programmers could set breakpoints, conditional breakpoints,

change variable values, etc.

• “This was brilliant and it was a huge breakthrough in the ease of

debugging Fortran programs. No one else matched it for years!

Worldwide! Before then, the program had to change in order to

debug it – and that change often moved the bug one was trying

to isolate.”

UW CSE P504 29

Sequence of Unix debuggers

• adb – absolute debugger, essentially symbolic

access at the assembly language level

• dbx (1981, Linton) – symbolic, multiple languages

supported, etc.

• gdb, DDD – “modern” dbx and screen-based

debuggers

UW CSE P504 30

Windows debuggers?

UW CSE P504 31

Source code control tools

• AKA revision

control, version

control, source

code

management, …

• SCCS, Marc

Rochkind,
IEEE Transactions

on Software

Engineering SE-1:4

(Dec. 1975). – first ICSE

N-10 Most Influential

Paper recipient

UW CSE P504 32

Post-SCCS…

• RCS (~backward deltas)

• CVS (~client-server based RCS)

• SVN (~”improvement” on CVS)

• ClearCase (~versions supported below application

level)

• Then came distributed revision control systems

– Arch, Monotone, BitKeeper, Git, Bazaar, …

UW CSE P504 33

Distributed revision control

• Multiple “central” repositories permitted

• Most operations don‟t require network access

• Allows different structures of authority, perhaps better

suited for open-source projects

• Not reliant on a single machine

• Concepts are not as simple to grasp

UW CSE P504 34

Source code control: discussion

UW CSE P504 35

Other tools

• Testing tools

• Bug databases

• …

• …others?

UW CSE P504 36

Final two lectures: suggestions

• Software testing

• Discussion of papers in groups

• Design patterns

• Here‟s what I think I want

– One lecture on software engineering economics [me]

– One lecture used for presentations on your state-of-the-research

reports [you]

• But we don‟t likely have time for every person or group to

present (even 10 minutes/presentation lets us do at most 15 in

one evening)

• An alternative idea: an all-at-UW poster session evening, with

people asking and answering questions on these papers

• Last suggestions by Wednesday, and then I‟ll decide

UW CSE P504 37

Roles of tools

• What aspects of the software lifecycle do they

address? Can they address? Should they address?

UW CSE P504 38

• Requirements

• Design

• Implementation

• Verification/Testing

• Maintenance

Waterfall

Editors

Debuggers

Testing

Roles of Tools

UW CSE P504 39

© 2010 Rally Software Development Corp

http://www.rallydev.com/agile_products/lifecycle_management/

Agile

Major addition

from waterfall

Version control

Tools and environments

• Understanding

• Building

• Modifying

• Debugging

• Testing

• …

• Interaction and rich user interfaces

• Translation of high-level

descriptions

• Maintaining consistency among

large and complex representations

• Encoding knowledge about an

activity, organization or process

• Broader availability of pertinent

information

• Communication medium

• …

UW CSE P504 40

X

Environments vs. tools

• Degree of focus on a single task vs. a set of tasks

• Degree to which the user interacts in a uniform way

• Degree to which the user is responsible for managing

consistency

• Degree to which there is a shared representation

Why environments? 30 years ago

• “During the past decade there has been a growing realization [that

software tools] have by and large failed to reduce cost and improve

quality. … [T]he essence of an environment is that it attempts to

redress the failures of individual software tools through synergistic

integration.” Osterweil, 1981

• “Current software development environments often help programmers

solve their programming problems by supplying tools such as editors,

compilers, and linkers, but rarely do these environments help projects

solve their system composition or management problems.” Notkin &

Habermann, 1979

• “A software development environment consists of a set of techniques to

assist the developers of software systems, supported by some

(possibly automated) tools, along with an organizational structure to

manage the process of software development. Historically, these

facilities have been poorly integrated.” Wasserman, 1981

Done deal

• There is little doubt that users prefer integrated tool

sets

– This can come from integrated development

environments like VisualStudio or Eclipse – along

with extensions

– This can come from aggressive extensions of

tools like Emacs

• Although the engineering and the “feel” may be

different, there seems to be little question that

blurring the edges of editor, compiler, debugger,

source code control, etc. is generally preferred

UW CSE P504 43

Unix: toolkit-based environment

• Simple integration mechanism

– Convenient user-level syntax for composition

• Standard shared representation

• Language-independent (although biased)

• Efficient for systems‟ programming

UW CSE P504 44

Interlisp (Xerox PARC)

• Started in 1967 at BBN as BBN Lisp

• Moved to Xerox PARC with Bobrow, Teitelman and

others and became Interlisp

• Lisp machines were developed and sold InterLisp-D.

• The environment was notable for the integration of

interactive development tools – debugger, DWIM,

etc.

• Very fast turnaround for code changes

• Monolithic address space

– Environment, tools, application code commingled

• Code and data share common representation

Teitelman and Masinter, 1981

• “From its inception, the focus of the Interlisp project has been

not so much on the programming language as on the

programming environment. … The programmer's environment

influences, and to a large extent determines, what sort of

problems he can (and will want to) tackle, how far he can go,

and how fast. If the environment is cooperative and helpful (the

anthropomorphism is deliberate), the programmer can be more

ambitious and productive. If not, he will spend most of his time

and energy fighting a system that at times seems bent on

frustrating his best efforts.”

• “The second major influence in Interlisp's development was a

willingness to „let the machine do it.‟ The developers were wiling

to expend computer resources to save people resources

because computer costs were expected to continue to drop.”

UW CSE P504 46

Features

• DWIM – Do What I mean

• The system detects

errors attempts to guess

what the user might have

intended – a “pervasive

philosophy of user

interface design”

• The environment as an

agent of the programmer

– the programmer‟s

assistant

• MASTERSCOPE

• For analysis and cross-

referencing

• Information about

function calls and

variable usage

UW CSE P504 47

Smalltalk-80 (Xerox PARC)

• Alan Kay and others at Xerox PARC

• Language and environment – largely indivisible

• Pure OO, dynamically-typed, reflective – metaclasses

to make “everything an object”

• Environment structured around language features –

class code browser/editor, protocols, inspectors,

notifiers, etc.

• Rich libraries (data structures, UI, etc.)

Cedar (Xerox PARC)

• Intended to mix best features of Interlisp, Smalltalk-

80, and Mesa

• Primarily was an improvement on Mesa

– Language-centered environment

– Abstract data type language

• Strong language and environment support for

interfaces

– Key addition: garbage collection

Some illustrative research environments

UW CSE P504 50

Toolpack (Osterweil, 1983)

• Consider breadth of tools needed for software

development (static analysis and testing tools,

documentation, etc.)

• “Tool fragments” to support tight integration of tools

into an environment

• Centralized tree-structured file system for sharing

data

• Focus on mathematical software

Gandalf (Habermann, Notkin, et al.)

• Structure-based environments

– Direct-manipulation of program objects – intent

was to decrease the gap between the programmer

and the compiler through sharing the abstract

syntax tree

• Environment generation – to allow multiple language

support

– Integration through implicit invocation by active

abstract syntax trees

– Shared database structured on ASTs

Initial IPE: Medina-Mora & Feiler 81

• “The integration of the tools allows IPE [interactive

programming environment] to present the

programmer with a uniform view of the program in

terms of its source form. The program is manipulated

through a syntax-directed editor, and its execution is

controlled by a language oriented debugger. The

debugging actions are embedded in the supported

language and are invoked by editing the program. …

[The] tools and their representation are not visible to

the user, the only (thus uniform) interface is the user

interface of the editor.”

UW CSE P504 53

Mentor

• Donzeau-Gouge, Huet, Kahn, Lang, Levy, 1984

• Structure-based environment

• Users could define dynamic views

– General-purpose tree manipulation language

• Formal basis for semantic definition

– Led to Centaur generation system

– Used natural semantics

Cornell

• Program Synthesizer [Teitelbaum & Reps, 1981]

– Syntax-based editing environment

– Text at expression-level

• Synthesizer Generator [Reps & Teitelbaum, 1984]

– Generation of syntax-based editors

– Based on definition of attribute grammars

– Incremental attribute grammar update algorithm

[Reps 1983]

Structure-oriented editors

• These failed because they

– unnecessarily and overly constrained the users

• one editor, one style

• hard to integrate external tools

• not bad for novice environments

– tried to reduce the wrong cost

• getting syntax (and static semantics) right isn‟t

such a big deal

– costly to produce (even after tons of research)

Structure-oriented editors

• Some language-oriented features have flourished

• Every successful program editor now encodes

knowledge about the programming language syntax

and often semantics

• Language-knowledgeable refactoring is a part of

editors now – this requires a richer representation

than text alone

• Some commands – like “compile” – are largely

disappearing (something Gandalf aspired to 30 years

ago)

UW CSE P504 57

Arcadia (R. Kadia, 1992)

• Process-based environment

– Process definition and execution

• Analysis and testing

• Measurement and evaluation

• UI development and management

• Event-based integration

• Typed object-base

Pecan (Reiss, 1984)

• Graphically-based environment

• Multiple, concurrent views

– Data structures

– Symbol table

– Flowchart

– Nassi-Shneiderman diagrams

• Many views read-only

Desert (Brown, Reiss)

• Single editor and lightweight data integration through

fragments

• Ability to dynamically jump among logically

connected files, and the ability to create and edit

virtual files, files that contain information relevant to

the current task extracted from all over the system.

UW CSE P504 60

Intentional Programming (http://intentsoft.com/)

• Charles Simonyi – first at Microsoft/MSR

• High-end domain-specific programming – exploit both

knowledge and notation from specific domains

• Some domains are claimed as successes – some

European financially-oriented efforts, for example

• “Traditional” programming is not, but then again the

goal is to reduce or eliminate that, not to support it

UW CSE P504 61

http://intentsoft.com/

Endeavors (UCI, Taylor & Redmiles)

• An open, distributed, extensible process execution

environment

• Designed to improve coordination and managerial

control of development teams by allowing flexible

definition, modeling, and execution of typical

workflow applications

UW CSE P504 62

Some myths: environments

• Integration is job #1

– Integrating tools helps, but only if the tools are the “right”

tools

– That is, integration is a second order effect, not a first order

effect

– This also suggests that extensibility, replaceability, etc. are

crucial because the “right” tools necessarily change over

time

• Graphics inherently dominate text – “A picture is worth a

thousand words”

– Screen real estate

– Sharing with other tools

– Sharing with other people

UW CSE P504 63

Some myths: CASE & environments

• Goal should be to change how software engineering is done

– No, it should be to enhance how people are doing software

engineering

• The tools can handle creative aspects of software engineering

– Tools frequently fail to be useful because they make poor

judgments about what the human does well and what the

computer does well

UW CSE P504 64

Modern IDEs

• “Eclipse started as a Java IDE, but has since grown

to be much, much more. Eclipse projects now cover

static and dynamic languages; thick-client, thin-client,

and server-side frameworks; modeling and business

reporting; embedded and mobile; and, yes, we still

have the best Java IDE.”

http://www.eclipse.org/projects/

• Microsoft Visual Studio is an IDE that supports

development of programs for virtually all Microsoft

platforms. Framework is language-independent, with

plug-in structures to specialize the environment to

given languages, source code control systems, etc.

UW CSE P504 65

http://www.eclipse.org/projects/

Eclipse architecture

Tools plug-ins (984)

• Application Management (46)

• Application Server (17)

• Build and Deploy (54)

• Code Management (51)

• Database (32)

• Database Persistence (3)

• Documentation (27)

• Editor (90)

• Entertainment (9)

• Graphics (16)

• IDE (113)

• J2EE Development Platform (25)

• J2ME (11)

• Languages (62)

• Logging (4)

• Modeling Tools (81)

• Mylyn Connectors (8)

• Network (10)
UW CSE P504 66

• Lightweight plug-in

mechanism on top of

a run-time system

supports extensibility,

integration and

uniformity

• The IDE has

an incremental Java

compiler and a full

model of the Java

source files, enabling

plug-ins for language

syntax and semantics

• Other (41)

• Process (19)

• Profiling (14)

• Reporting (5)

• Rich Client Applications (12)

• SCM (13)

• Search (3)

• Source Code Analyzer (57)

• Systems Development (16)

• Team Development (52)

• Testing (61)

• Tools (215)

• UI (58)

• UML (37)

• Web (43)

• Web Services (16)

• XML (16)

Platform components

• Ant Eclipse/Ant integration

• Core Platform Runtime and resource management

• CVS Platform CVS Integration

• Debug Generic execution debug framework

• Releng Release Engineering

• Search Integrated search facility

• SWT Standard Widget Toolkit

• Team/Compare Generic Team & Compare support frameworks

• Text Text editor framework

• User Assistance Help system, initial user experience, …

• UI Platform user interface

• Update Dynamic Update/Install/Field Service

UW CSE P504 67

Wikipedia: truncated C/C++…

Visual Studio

• A code editor, with IntelliSense (a modern-day

DWIM) and refactoring

• Integrated source- and machine-level debuggers

• Support for GUI, web and database design

• Can add plug-ins for domain-specific languages and

tools for other aspects of the lifecycle

UW CSE P504 69

Distributed software development

• What tools are needed?

UW CSE P504 70

Speculation: ongoing research @ UW

UW CSE P504 71

Speculation over merging?

UW CSE P504 72

Next two lectures (no lecture 2/15)

• Next week

– A few tools in some more depth: likely candidates

include reflexion models, continuous testing,

concolic testing, delta debugging, …

• February 22 (Reid Holmes): Future directions and

areas for improvement

– Rational behind the drive towards integration

• Capturing latent knowledge

• Task specificity / awareness

• Supporting collaborative development

UW CSE P504 73

Questions?

UW CSE P504 74

